% ..i"”% U.S. DEPARTMENT OF Offlce Of

%5 EN ERGY Science

CMS Event Processing Multi-core Efficiency Status

Dr Christopher Jones on behalf of CMS Offline and Computing
CHEP 2016

10 October 2016

Multi-threading Use In CMS

Multiple threads used for standard work

Have run reconstruction step with 4 threads
» prompt data usage for all LHC Run 2
* Monte Carlo production since Summer 2016

Running HLT 4 with threads since September of 2015

Simulation step with 4 threads will start Winter 2016
* Capability has been tested since Summer 2015

Only supported having one thread per concurrent event
Referred to in this talk as Original

Only using 4 threads per job since

Has good CPU efficiency
Sufficient to staying within memory limits of worker nodes
Keeps the number of simultaneous jobs controlled by workflow management to a workable limit

2= Fermilab

2 2016/10/10 C Jones | CMS Event Processing Multi—core Efficiency Status

Processing Stalls

Sharing resources across concurrently running events leads to thread stalls

Examples

All reads from ROOT input file must be serialized

Writing to a ROOT output file must be serialized
* Note: can write to different ROOT output files simultaneously

Legacy modules are not thread safe so the framework will only run one at a time

One thread per event implementation ran modules in fixed order
Could not schedule around algorithm waiting for a shared resource

2= Fermilab

3 2016/10/10 C Jones | CMS Event Processing Multi—core Efficiency Status

Stall Demonstration

Simple configuration to demonstrate stalls

Reads from input file
Two legacy modules which cannot run simultaneously
Five additional modules which are thread-safe

Data dependencies between modules constrain allowed concurrency
* Note: modules wait until all their data has been made available from other modules

Thread-Unsafe Legacy

Thread-Safe

Input
e ——

2= Fermilab

4 2016/10/10 C Jones | CMS Event Processing Multi—core Efficiency Status

Example Stall with Original Implementation

IFour concurrent event loops

Each loop is referred to as a stream
Each loop can only use one thread

Green is when a module is running in stream
White is when no module running in stream

Red is when a stalled module is running

White precedes red when a stall happens

Module stalls because it can not run concurrently
and another stream is running the module

5 2016/10/10 C Jones | CMS Event Processing Multi—core Efficiency Status

Stream ID

modules running

stalled module running

4.0

3.0

2.0

0.5

5 10
Time (sec)

15

20

2= Fermilab

Stall Mitigation using Multiple Threads per Concurrent Event (1)

All independent sequences of event filtering modules are started simultancously
Within a sequence the modules must be run within the set order

2= Fermilab

6 2016/10/10 C Jones | CMS Event Processing Multi—core Efficiency Status

Stall Mitigation using Multiple Threads per Concurrent Event (2)

Data for modules are prefetched asynchronously

Provides a large number of tasks for TBB to schedule
Module starts after prefetches have finished

7 2016/10/10 C Jones | CMS Event Processing Multi—core Efficiency Status

2= Fermilab

Stall Mitigation using Multiple Threads per Concurrent Event (3)

A shared resource is guarded by a serial task queue

Modules needing the resource have their ‘to run’ task placed in the appropriate queue
When a task from a queue finishes, it automatically starts the next task in the queue

2= Fermilab

8 2016/10/10 C Jones | CMS Event Processing Multi—core Efficiency Status

Four threads with four streams

Blue when multiple modules running in a stream

Height of blue bar proportional to number of running
modules

Blue on one stream corresponds to white on
another

9 2016/10/10 C Jones | CMS Event Processing Multi—core Efficiency Status

Stream ID

modules running stalled module running
multiple modules running

" ————
S
————

Time (sec)

et et

20

2= Fermilab

Example Stall Mitigation with Multiple Threads

FIVG threads Wlth f()U.I’ stréams modules running stalled module running
multiple modules running

Stalls greatly mitigated ' ! .
Job finishes in less time 40 | | | | | ||| || _

3.0
Qo
&
@ i
N

2.0 |

5 10 15 20
Time (sec)
2& Fermilab

10 2016/10/10 C Jones | CMS Event Processing Multi—core Efficiency Status

Realistic Demonstration Measurements

Machine for testing
Westmere-EP L5640 CPU with 6 cores x 2 hyper-threads

Compared Reconstruction jobs

Original one-thread-per-event
Concurrent modules per event with number threads == number of streams
Concurrent modules per event with number threads == 12

Reconstruction configuration summary

3 output modules
1780 other modules
21 filter sequences

2= Fermilab

11 2016/10/10 C Jones | CMS Event Processing Multi—core Efficiency Status

Event Throughput Comparison

0.6

O
o1

o
N

Event Throughput (ev/sec)
O O
N W

O
—h

12

1.6
% 12 threads
+ #threads=#streams
O OQiriginal * 1.5
a 1.4
c
O
-
o 1.3
e
|_
.029 1.2
©
()]
T 1.1
1
- - - - - - 0.9
0 2 4 6 8 10 12

Number of Streams

2016/10/10 C Jones | CMS Event Processing Multi-core Efficiency Status

* 12 threads/Original
+ threads=streams/Original

2 4 6 8 10 12

Number of Streams

2= Fermilab

Reconstruction with 8 Threads and 6 Concurrent Events

modules running stalled module running
Stalls are solely caused by one output module multiple modules running

7
The one which takes longest per event

Dynamic scheduling allows stall mitigation
Can reorder legacy modules and other output modules

il i, Ll bl il
3 [EPRTTR TR TR KRR APRTINR T VI
(R N TYNTRN RN O AN YT
IO O Y O Y A Y R T TP
b i
: ku.kuw_u) T 106 O

50 100 150 200 250
Time (sec)

Additional threads increase throughput

Stream ID
N

UU

2= Fermilab

13 2016/10/10 C Jones | CMS Event Processing Multi-core Efficiency Status

Memory Utilization per Stream

High initial memory
~2 GB

Memory grows slowly w.r.t number of streams
~150 MB/stream

Increasing number of threads does not noticeably
increase memory usage

RSS Memory (GB)
N

0 2 4 6 38 10 12

Number of Streams

2= Fermilab

14 2016/10/10 C Jones | CMS Event Processing Multi-core Efficiency Status

Total Throughput vs Memory for Fully Loaded Machine

. 2 processes 3 processes 6 processes 12 processes
6 thread/process + 4 thread/process 2 thread/process + 1 thread/process
S 06 S streams + 4 streams 2 streams 1 streams
3 ° +
L
N ++
- 0.5
(- .
D 2 processes
> 6 thread/process
D O 4 6 streams
— .
-
oN 1 process ’
- O 3 12 thread/process progess
g) . 10 streams 12 thread/process
12 streams
O
-
— 0.2
©
O
— 0.1
0 0.5 1 1.5 2

Average Memory Used Per Core (GB)

Choose (number of processes) * (number of threads) to utilize all twelve cores
Included number of threads > number of streams

Can choose reasonable options between 2 .1 and .5 GB/core options
L, H
af Fermilab

15 2016/10/10 C Jones | CMS Event Processing Multi—core Efficiency Status

Conclusion

CMS has successtully utilized multi-threaded processing jobs
All prompt reconstruction for Run 2 were multi-threaded jobs

YT
Allowing multiple threads per event will allow N
processing of more memory intensive jobs

o

o

60%

o

utilization of machines with lower memory per core limits
Greater threading efficiency is important as CMS is
continually increases its utilization of multi-threading

40%

Percentage of Sum of CoreHr
o

20%

2016-04-30 2016-05-31 2016-06-30 2016-07-31 2016-08-31 2016-09-30
Percentage of RecordTime per day

2= Fermilab

16 2016/10/10 C Jones | CMS Event Processing Multi—core Efficiency Status

